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Abstract.   Effective species conservation and management requires information on species distribution 
patterns, which is challenging for highly mobile and cryptic species that may be subject to multiple an-
thropogenic stressors across international boundaries. Understanding species– habitat relationships can 
improve the assessment of trends and distribution by explicitly allowing high- resolution data on habitats 
to inform abundance estimation and the identification of protected areas. In this study, we aggregated 
an unprecedented set of survey data of a marine top predator, the harbor porpoise (Phocoena phocoena), 
collected in the UK (SCANS II, Dogger Bank), Belgium, the Netherlands, Germany, and Denmark, to de-
velop seasonal habitat- based density models for the central and southern North Sea. Visual survey data 
were collected over 9 yr (2005–2013) by means of dedicated line- transect surveys, taking into account the 
proportion of missed sightings. Generalized additive models of porpoise density were fitted to 156,630 km 
of on- effort survey data with 14,356 sightings of porpoise groups. Selected predictors included static and 
dynamic variables, such as depth, distance to shore and to sandeel (Ammodytes spp.) grounds, sea surface 
temperature (SST), proxies for fronts, and day length. Day length and the spatial distribution of daily SST 
proved to be good proxies for “season,” allowing predictions in both space and time. The density mod-
els captured seasonal distribution shifts of porpoises across international boundaries. By combining the 
large- scale international SCANS II survey with the more frequent, small- scale national surveys, it has been 
possible to provide seasonal maps that will be used to assist the EU Habitats and Marine Strategy Frame-
work Directives in effectively assessing the conservation status of harbor porpoises. Moreover, our results 
can facilitate the identification of regions where human activities and disturbances are likely to impact 
the population and are especially relevant for marine spatial planning, which requires accurate fine- scale 
maps of species distribution to assess risks of increasing human activities at sea.

Key words:   aerial surveys; conservation; generalized additive model; harbor porpoise; marine mammals; marine 
 spatial planning; North Sea; species distribution modeling; top predator.
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INTRODUCTION

The success of conservation efforts relies fore-
most on our ability to quantify variability in 
the abundance and distribution of wildlife at a 
variety of spatial and temporal scales. Effective 
species conservation and management also re-
quires information on species distribution pat-
terns, but this can be particularly challenging 
for highly mobile and cryptic species that may 
be subject to multiple anthropogenic stressors 
across international boundaries. Understanding 
species– habitat relationships can improve the as-
sessment of population size, trends, and distribu-
tion by explicitly allowing high-resolution data 
on habitats to inform abundance estimation and 
the identification of protected areas. Worldwide, 
the marine environment is under increasing 
pressure from human activities (Halpern et al. 
2008, Maxwell et al. 2013). Top predators, such 
as marine mammals, can serve as prime sentinels 
of multitrophic marine ecosystem changes since 
they integrate ecological variations across large 
spatial and long temporal scales (Moore 2008, 
Kiszka et al. 2015).

The European Union (EU) has recognized in-
creasing human pressures (e.g., intended and 
unintended harvest, habitat degradation, un-
derwater noise, and climate change) to the ma-
rine environment and adopted policies, such 
as the Marine Strategy Framework Directive 
(MSFD; EU- COM 2008), to manage human im-
pacts and to conserve biodiversity (Bertram and 
Rehdanz 2013). However, information on the 
spatio- temporal distribution of marine mammals 
throughout the European seas is often lacking. 
The harbor porpoise (Phocoena phocoena) is among 
the most common cetaceans in European Atlan-
tic shelf waters (Hammond et al. 2002, 2013) and 
as a top predator considered an important indi-
cator species. It is distributed in coastal and shelf 
 waters and is particularly exposed to  human 
 impacts that can lead to disturbance,  injury, 
or death (e.g., Siebert et al. 1999, Vinther and 
Larsen 2004, Das et al. 2006, Dähne et al. 2013, 

 Thompson et al. 2013, Dyndo et al. 2015). In EU 
waters, the species has a high conservation sta-
tus under several conventions; for example, it is 
listed in Annexes II and IV of the EU Habitats Di-
rective (EU- COM 1992) and on the OSPAR list of 
threatened and/or declining species and habitats 
of the Northeast Atlantic (OSPAR 2008). Harbor 
porpoises within European waters show distinct 
variation in their distribution on seasonal, inter- 
annual, and decadal time scales (Gilles et al. 2009, 
Scheidat et al. 2012, Hammond et al. 2013, Pesc-
hko et al. 2016); however, drivers of these varia-
tions have not yet been fully identified, in part 
because ecological linkages between porpoises, 
their environment and their prey species are dy-
namic and poorly understood. Species– habitat 
models (or species distribution modeling, SDM) 
can help shed light on ecological relationships 
and/or provide a basis for hypothesis- driven 
studies on trophic linkages.

The ecological theory of SDM assumes that 
species distributions are largely influenced 
by environmental variables (Austin 2007). Al-
though migration, predator avoidance, and 
social interactions influence the behavior of ce-
taceans, distribution patterns are most strongly 
influenced by foraging on patchy prey (Pala-
cios et al. 2006, 2013, Redfern et al. 2006). Most 
marine mammals aggregate in spatially con-
strained areas, often termed “hotspots,” where 
prey availability and foraging efficiency are 
high. Prey availability in the ocean, in turn, is 
largely determined by physical forcing mecha-
nisms, such as fronts and eddies that aggregate 
primary and secondary producers. For har-
bor porpoises, both static variables (e.g., water 
depth) and dynamic  variables (e.g., currents, 
tide- related variables, chlorophyll) have been 
shown to explain spatial  distribution patterns 
(Marubini et al. 2009, Embling et al. 2010, Gilles 
et al. 2011, Booth et al. 2013, IJsseldijk et al. 2015). 
The incorporation of habitat variables into ce-
tacean distribution models allows the estima-
tion of abundance and animal densities at finer 
spatial and temporal scales than  conventional, 
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design- based line- transect analyses (see reviews 
in Redfern et al. 2006, Gregr et al. 2013); there-
fore, such model- based densities can improve 
fine- scale management needs.

Previously, the only robust estimates of har-
bor porpoise density for the entire North Sea 
were derived from the two SCANS (Small Ceta-
cean Abundance in the North Sea) surveys, con-
ducted in 1994 and 2005 (Hammond et al. 2002, 
2013). While there has been considerable region-
al survey effort on national scales (e.g., Gilles 
et al. 2009, Haelters et al. 2011, Scheidat et al. 
2012, Geelhoed et al. 2013, Peschko et al. 2016), 
these data sets have been analyzed separately 
and provide a spatially and temporally patchy 
picture of porpoise distribution in the south- 
eastern North Sea. The aim of this study was to 
combine the available comparable data sets to 
develop seasonal habitat- based density models 
for harbor porpoises in the central and southern 
North Sea. The data sets were collected over 9 yr 
(2005–2013) and during three seasons by means 
of dedicated aerial surveys for harbor porpois-
es that used standardized line- transect survey 
methods and incorporated correction factors for 
missed  animals on the transect line (Hiby and 
Lovell 1998, Buckland et al. 2001). We devel-
oped generalized additive models of porpoise 
density, incorporating near  real- time remote 

sensing data to identify dynamic  mesoscale 
oceanographic features that are often observed 
to be hotspots for marine mammals (Scales et al. 
2014). The results of our study are especially 
relevant for marine spatial planning, which re-
quires accurate fine- scale maps of species dis-
tribution to assess risks of increasing human 
activities at sea.

MATERIALS AND METHODS

Study area
Our study area covered 411,000 km2 in the 

central North Sea and Southern Bight ranging 
from 3.4° W to 9.8° E and from 50.9° N to 
58.4° N (Fig. 1). The North Sea is a continental 
shelf sea, characterized by shallow water depths 
(30–200 m), except for the Norwegian Channel 
and the Skagerrak (up to 600 m) on its eastern 
margin (Fig. 1). The highest productivity occurs 
in coastal regions and in areas such as the 
Dogger Bank, which is the largest sandbank in 
the central North Sea (18,000 km2), where high 
levels of phytoplankton production occur year- 
round (Brockmann et al. 1990). The North Sea 
is rich with frontal patterns, and up to 10 oce-
anic fronts were distinguished by Belkin et al. 
(2009). Tidal mixing, river plume, and upwelling 
fronts dominate these areas (Krause et al. 1986). 

Fig. 1. Study area in the North Sea. (A) Water depth and distribution of sandeel grounds; (B) aerial survey 
strata in Denmark (DK), Germany (DE), the Netherlands (NL), and Belgium (BE); (C) survey strata covered 
during the SCANS II (ship and aerial) and the aerial Dogger Bank surveys. The dashed line indicates the 
Exclusive Economic Zones (EEZ).
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A high number of sea surface temperature (SST) 
fronts were detected (Belkin et al. 2009). Other 
front- like structures are the boundaries between 
the North Sea water and the Baltic outflow from 
the Skagerrak, as well as between the inflow 
of Atlantic water from the North and from the 
English Channel (Otto et al. 1990).

Survey data and field methodology
We based our density models on a large 

number of dedicated aerial visual surveys 
 conducted within the respective national wa-
ters of Denmark, Germany, the Netherlands, 
Belgium and in adjacent areas (UK) between 
2005–2013 (Figs. 1 and 2). All study areas, ex-
cept for the smaller Belgian EEZ (see Haelters 
et al. 2011), were geographically stratified 
(Fig. 1) and a parallel or zigzag transect layout 
was used to provide equal coverage probability 
in each survey block. All these systematic sur-
veys were part of national monitoring programs 
conducted throughout most of the year, although 
at varying frequencies that led to uneven re-
gional coverage. To increase the spatial coverage 
of the central North Sea, we included several 
blocks of shipboard and aerial survey from the 

SCANS II survey conducted during summer 
2005 (Hammond et al. 2013, Fig. 1).

Distance- sampling line- transect methods (Buck-
land et al. 2001) were consistently followed on 
all the visual surveys and the same experienced 
 observers participated in most of the surveys. 
 Detailed descriptions of aerial survey field meth-
ods are provided elsewhere (Scheidat et al. 2008, 
Gilles et al. 2009, Hammond et al. 2013). All  aerial 
surveys used the same platform, a twin engine, 
high- wing aircraft outfitted with two bubble win-
dows for unobstructed downward and  lateral 
viewing. Surveys were flown at an altitude of 
600 ft (183 m) and groundspeeds of 90–100 kts 
(165–185 km/h). Two observers scanned the water 
surface through left and right bubble windows. 
A third person, the data recorder, entered all re-
ported data directly into a laptop with real- time 
GPS input using a customized program (except in 
Belgium where the  observers recorded sighting 
information manually). The aircraft’s position was 
stored every 2 s. The start and end positions of 
the transect lines and the exact sighting positions 
were recorded. Surveys were only conducted 
in Beaufort sea states 0–3 and visibilities > 5 km. 
Sea state, turbidity, cloud coverage and, for each 

Fig. 2. Overview of available overall monthly (top panel) and yearly (bottom panel) survey data in the period 
2005–2013.
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 observer side, glare details (angle obscured and 
intensity of glare) and an overall subjective assess-
ment of detection conditions (good, moderate, 
or poor) were recorded at the beginning of each 
transect and whenever conditions changed. Good 
conditions normally required sea states ≤ 2, clear 
water and no strong glare; conditions changed to 
moderate when sea state deteriorated or strong 
glares affected downward view. Total effective 
strip widths (esw; both sides of the plane), taking 
account of detection probability less than 1 on the 
transect line (commonly known as g(0)), were es-
timated for good and moderate conditions using 
the racetrack data collection method (Hiby and 
Lovell 1998, Hiby 1999). This provided a correc-
tion for missed animals within varying sighting 
conditions that could also differ between observ-
er sides (see Scheidat et al. 2008 for details). Here, 
total esw was estimated to be 170 m (CV = 0.23) 
under good conditions and 67 m (CV = 0.24)  under 
moderate conditions, incorporating g(0) values of 
0.405 and 0.164, respectively.

Shipboard cetacean survey data gathered 
during the SCANS II survey in blocks U and V 
were used to increase sampling coverage in the 
central North Sea. The shipboard surveys used 
double platform line- transect survey methods, 
described in Hammond et al. (2013). In order to 
correct for animals missed on the transect line, 
we applied a g(0) of 0.216 (CV = 0.16) for the 
SCANS II ship survey blocks (taken from Ham-
mond et al. 2013), but re- estimated the stratum 
(ship) specific esw for blocks U and V.

Data preparation
Survey data collected in poor conditions (as 

defined for aerial surveys) and in Beaufort sea 
states higher than 2 for shipboard surveys were 
not included. Survey effort was very low and 
patchy during winter; therefore, data collected 
during December– February were excluded from 
further analysis. The three remaining seasons 
were defined according to the meteorological 
start in north temperate zones (i.e., Mar–May 
= spring; Jun.–Aug. = summer; Sep.–Nov. = fall); 
this division also corresponds well to temperature 
cycles in the North Sea (Nauw et al. 2015). In 
addition, this division also captures sensitive 
periods in the annual reproduction cycle of harbor 
porpoises in the North Sea, where the birth and 
mating period occurs in summer (Lockyer 2007).

The SCANS II ship data were already  prepared 
and divided into segments of continuous ef-
fort over approximately 30 min, resulting in 
 average segment length of 6.8 km (SD = 2.8; 
 median = 7.34 km). The aerial survey transects 
were divided into continuous- effort segments 
with a target segment length of 10 km, to cap-
ture the characteristics of the environmental data 
and to reduce the number of segments with zero 
sightings. Leftover segments of less than 2 km 
were ignored (i.e., 359 segments with 24 sight-
ings), as commonly done (e.g., Marubini et al. 
2009, Booth et al. 2013, Mannocci et al. 2014). 
Since this affected < 2% of the data, the omission 
of a short segment at the end of a transect would 
not be expected to introduce a bias.

Predictor variables
The candidate set of predictor variables 

(Table 1) was selected based on ecological 
knowledge and previous studies on the distri-
bution of harbor porpoises. Due to large data 
gaps, remotely sensed chlorophyll- a concentra-
tion was excluded from the list of initially 
considered variables. The set included the pro-
jected spatial covariates x and y, bathymetry 
and topography related predictors, closest dis-
tance to coast, distance to sandeel (Ammodytes 
spp.) fishing grounds and, as dynamic predic-
tors, sea surface temperature (SST), the spatial 
and temporal standard deviation (SD) of SST 
(as proxies for fronts), and day length to cap-
ture seasonal variations (Table 1).

The sandeel is an important prey species not 
only for harbor porpoises (Santos and Pierce 
2003) but also for piscivorous fish that are also 
preyed upon by porpoises. A recent study in the 
southern North Sea showed that sandeel was 
among the “big four” of harbor porpoise diet, 
besides gobies, gadoids, and clupeids (Leopold 
and Meesters 2015). In our model, data on the 
spatial distribution of sandeel foraging grounds 
were based on information from fisheries and 
navigation data provided by fishermen (Jensen 
et al. 2011). A distance of zero was assigned to 
all effort segments lying within these sandeel 
grounds.

Remotely sensed SST was derived on a daily 
basis at 0.011 degrees (about 1 km) equal- angle 
horizontal resolution from a level 4 (L4; gap- free 
gridded) SST image, downloaded from NOAA’s 
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ERDDAP data server (Simons 2015). Since ocean-
ic features such as fronts often result in steep SST 
gradients, we included the SD of SST as a proxy 
for frontal regions. A spatial SD of SST (SST- SD- 
Space) was calculated for a square box with a ra-
dius of 5, 10, and 20 pixels in x and y direction 
centered on the pixel containing the segment 
midpoint. To capture temporal variability at a 
given point (as a proxy for frontal movement), 
we also included an 8- d temporal measure of 
variation (SST- SD- Time).

Collinearity between predictors was ad-
dressed by estimating the variance inflation 
factor (VIF) using the R package HH 3.1-15 
(Heiberger 2015). VIF for a single explanatory 
variable was obtained using the r- squared  value 
of the regression of that variable against all 
other explanatory variables. Large VIF values 
indicate collinearity (Dormann et al. 2013). All 
candidate predictors yielded VIF scores below 
4, suggesting that collinearity was not a major 
concern in our data, with highest VIFs for the 
spatial covariates x (2.92) and y (3.81) as well as 
distance to coast (2.95), slope (2.75), and water 
depth (2.67).

Model framework
Generalized additive models (GAMs; Hastie 

and Tibshirani 1990) have previously been used 
to model nonlinear relationships between ce-
taceans and habitat covariates (e.g., Becker et al. 

2010, 2014, Gilles et al. 2011, Forney et al. 2012, 
2015). GAMs were fitted in R 3.1.2 (R Core 
Team 2014) using the package mgcv 1.8.- 3 (Wood 
2006, 2011). Restricted maximum likelihood 
(REML) with automatic term selection (Marra 
and Wood 2011) was used for smoothing pa-
rameter estimation. We used default thin- plate 
regression splines in all models except for the 
tensor product smooths of spatial interaction 
terms, where the default cubic regression splines 
were used.

The model was fit to the full data set (i.e., 
2005–2013, all months from March- Nov.). The 
number of porpoise groups encountered per 
segment was defined as the response variable. 
Models assuming a quasi- Poisson, negative bino-
mial, and Tweedie distribution for the response 
 variable were initially considered. Based on in-
spection of diagnostic plots of model residuals 
and quantiles, the negative binomial distribution 
(‘nb()’ function in mgcv) was ultimately selected 
for the final models. The natural logarithm of 
the effective area searched (in km2) was includ-
ed as an offset to account for both varying seg-
ment lengths and varying detection probabilities 
based on recorded sighting conditions during 
the surveys. Sighting condition specific estimates 
of esw were applied for each segment with good 
vs. moderate subjective sightings conditions, as 
defined above for aerial surveys. The effective 
area searched was then calculated as the seg-

Table 1. List of candidate predictors and their abbreviation as used throughout the text. All predictors were 
included in the model without any transformation.

Predictor Abbreviation Unit Description

x ETRS coordinate x m ETRS Lambert Azimuthal, EPSG 3035
y ETRS coordinate y m
Water depth Depth m Bathymetrie
Slope Slope Degree Slope of seabed; slope and aspect were computed using “terrain” 

in R package raster 2.3–24 (Hijmans 2015a)
Aspect Aspect Degree Azimuthal direction of slope
Distance to sandeel  

ground
Dist to sandeel km Jensen et al. 2011, closest distances were retrieved using rgeos 

0.3–8 (Bivand and Rundel 2014) in R
Distance to coast Dist to coast km Closest distance to European mainland or islands; rgeos 0.3–8
Sea surface  

temperature
SST °C Daily image at 1 km pixel resolution; blended high- resolution 

MUR SST (JPL 2010)
SST- SD- Time SST- SD- Time °C SD of SST for 8- d period ending on each survey day
SST- SD- Space5 SST- SD- Space5 °C SST variability in 11 × 11 km box 
SST- SD- Space10 SST- SD- Space10 °C SST variability in 21 × 21 km box 
SST- SD- Space20 SST- SD- Space20 °C SST variability in 41 × 41 km box 
Day length Dayl h Photoperiod for given latitude and date; R package geosphere 

1.3–13 (Hijmans 2015b)
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ment length multiplied by esw (incl. g(0)). Since 
these estimates are specific to sighting conditions 
and platform, any differences in sighting rates/ 
detection  probabilities are fully accounted for.

As part of model diagnostics we also tested for 
spatial autocorrelation (SAC) in the model resid-
uals using a correlogram to assess data indepen-
dence (Dormann 2007).

Model selection
Model selection was performed in a two- 

step process that first identified candidate 
predictors to include in the model using good-
ness of fit criteria (e.g., AIC, REML, and visual 
inspection of modeled spatial patterns com-
pared to sighting data) and then selected a 
final model from the candidate models based 
on predictive performance (cross- validation 
across years).

Step 1: Identify candidate models based on goodness 
of fit measures.—

1. Candidate models were initially identified us-
ing AIC/REML criteria within mgcv. Models 
with and without a smooth of spatial covari-
ates x and y were considered separately and 
with each of the SST-SD-Space predictors (5, 
10, and 20) since these were highly correlated.

2. Nonsignificant predictors (α = 0.05) and pre-
dictors where the confidence band of the 
partial residuals included zero throughout 
the model’s predictor range (i.e., the predictor 
might not be influential) were subsequently 
excluded and models were re-fit prior to 
the cross-validation process.

3. The prediction plots for the remaining can-
didate models were inspected and the av-
erage squared prediction error (ASPE; Hastie 
and Tibshirani 1990) was calculated across 
all segments to assess predictive perfor-
mance on the full data set. Models were 
excluded from consideration if mean por-
poise density predictions throughout the 
North Sea study area were excessively large 
and biologically infeasible, as this was con-
sidered an indication of poor model con-
vergence or mis-parameterization.

Step 2: Select the best candidate model based on 
cross- validation.— In a second step, we performed 
cross- validation to identify the candidate model 
with the greatest predictive power on novel data 

sets, using a pseudo- jackknife process similar to 
that described in Becker et al. (2010). Each 
candidate model was fit to subsets of the available 
survey data that either excluded 2009, 2010, 2011, 
2012, or 2013, respectively. These years are 
characterized by high overall effort and good 
spatial coverage of the study area. Earlier years 
were not used as novel data sets for cross- 
validation because they either had limited spatial 
coverage (2006–2008; Appendix S1: Fig. S1), or 
they represented the only coverage of the north-
ern part of our study area and were considered 
essential to the model (2005). During the re- 
fitting, all predictors that were included in the 
candidate models for the full data set were 
included. Model predictions for the excluded 
(“novel”) year were evaluated using ASPE. The 
model that minimized the sum of ASPE across all 
the above individual- year cross- validation steps 
was selected as the final “best” model.

Prediction
Predictions were made on a spatial grid of 

habitat and static covariates at a resolution of 
5 × 5 km. Given the finer spatial resolution 
of the prediction grid, we also made predictions 
on a 10 × 10 km grid to evaluate potential 
bias. We found that the predictions for all three 
seasons were almost identical, but the coarser 
10 × 10 km scale is less useful to managers. 
We limited the grid to an area of about 
411,000 km2 that included all covered transects 
(Fig. 1), to avoid predicting outside of the range 
of covariates used in model fitting. Porpoise 
group densities were predicted on a daily basis 
for each survey period in each year resulting 
in 1864 daily predictions. To allow comparison 
of seasonal trends in porpoise density, we sub-
sequently averaged daily group densities within 
each season (spring, summer, and fall) and 
multiplied by the mean observed seasonal group 
size (Table 2).

Model- based abundance and estimation 
of uncertainty

Model- based abundance was calculated as 
the product of the predicted animal density 
in each cell and the “at- sea” area of the cell 
(in km2), summed over all grid cells to obtain 
an overall seasonal model- based abundance 
estimate for the entire study area. Sources of 
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uncertainty in our model- based abundance es-
timates include variations in mean group size 
(CV1), combined model specification and en-
counter rate (CV2), and detection parameters 
(CV3 & CV4). Each of these components was 
estimated separately. Uncertainty in the esti-
mated mean group size (CV1) was calculated 
from the sightings in each season (Table 2). 
Following the approach in Forney et al. (2015), 
a jackknife procedure was used to estimate 
model uncertainty and encounter rate variation 
(CV2). For the jackknife, the survey days were 
randomly divided into 10 sets, and one set 
(comprising 10% of the survey days) was with-
held for each of 10 jackknife iterations. Model 
fitting and prediction grid calculations were 
performed for each jackknife iteration as de-
scribed above for the full data set, implying 
that uncertainty associated with the GAM co-
efficients is incorporated. Model uncertainty 
was then estimated on a cell- by- cell basis as 
the SD of the jackknife model predictions. 
Uncertainty in the detection parameters was 
estimated based on the standard error of esw 
and g(0), respectively, for aerial (CV3) and 
shipboard surveys (CV4; only in summer). To 
retrieve an overall coefficient of variation (CVall) 
and to calculate log- normal confidence intervals 
(CI) for the seasonal model- based abundance 

estimates, the different components of uncer-
tainty were then combined following Goodman 
(1960):

Eq. 1 assumes independence between the dif-
ferent sources of uncertainty, which is justifiable 
in our case since there are no common param-
eters or shared data subsets for the different 
sources of uncertainty.

RESULTS

Joined survey data
A total of 251 survey (effort) days conducted 

during 60 months within the study period 
2005–2013 were included in this study. We 
aggregated 156,630 km of on- effort survey data 
with 14,356 sightings of harbor porpoise groups 
to build the models (for details on survey blocks, 
transect lines, and sighting locations see refer-
ences in Table 2 and Fig. 1).

A total of 16,673 effort segments were included 
in the full model, with a median segment length 
of 9.88 km. Of these, 6305 segments were as-
signed to spring, 7657 to summer and 2711 to fall 
(Fig. 3). Data were available for the south- eastern 

(1)
CVall =

√

CV
2

1
+CV

2

2
+CV

2

3
+CV

2

4

Table 2. Summary of 2005–2013 survey data used for model development: effective survey effort (km in good 
or moderate conditions for the aerial surveys, and with sea state ≤2 for the ship surveys) as well as number of 
sightings of harbor porpoise (Hp) groups and mean group size are shown. Seasonal mean group sizes are 
based on the combined sighting data for each season (see text for definitions).

Survey Effort (km) Hp sightings Hp individuals Mean group size (SD) Source

Belgium (2008–2013) 9207 1192 1442 1.21 1, 2
Dogger Bank (2011 and 2013) 12,246 1125 1708 1.52 3, 4
Denmark, south. North Sea 

(2011–2013)
2561 227 291 1.28 4

Germany (2005–2013) 87,263 8720 10,604 1.22 5, 6, 7, 8, 9
The Netherlands (2008–2013) 38,013 2718 3244 1.19 10, 11
SCANS II aerial surveys 2005 

(blocks B, H, L and Y)
4248 225 277 1.23 12

SCANS II ship surveys 2005 
(blocks U and V)

3119 149 232 1.56 12

Sum 156,630 14,356 17,798 1.24 (0.47)
Spring 59,486 6461 7466 1.16 (0.37)
Summer 71,430 6797 8842 1.30 (0.51)
Fall 25,714 1098 1490 1.36 (0.60)

Notes: SD, standard deviation. Sources are: 1, Haelters et al. (2011); 2, Haelters et al. (2015); 3, Gilles et al. (2012a); 4, Geelhoed 
et al. (2014); 4, Hansen (2015); 5, Gilles et al. (2009); 6, Gilles et al. (2011); 7, Gilles et al. (2014a); 8, Gilles et al. (2014b); 9, Dähne 
et al. (2013); 10, Scheidat et al. (2012); 11, Geelhoed et al. (2013); 12, Hammond et al. (2013).
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North Sea in spring and fall, whereas a larger 
portion of the North Sea was covered during 
summer due to the inclusion of the two Dogger 
Bank surveys and the large- scale SCANS II sur-
vey that took place in summer (Fig. 3). However, 
the northern (i.e., north of 56° N) and southwest-
ern regions of the study area were rather poorly 
covered.

Model selection
The first step of model selection yielded a 

total of six candidate models (Table 3). These 
models either included an isotropic bivariate 
function of spatial location (x and y) or a three- 
dimensional tensor product and either distance 
to coast or depth or both. During the second 
step of model selection, model 4 was selected 
as the “best” model because it minimized the 
sum of ASPE across all individual- year cross- 
validation steps (Table 3) and had the best model 
diagnostics and goodness of fit measures (i.e., 
lowest REML/AIC). This best model explained 
24.7% of the deviance using a negative binomial 
error distribution and a three- dimensional tensor 
product smooth of location and SST, a smooth 
of day length, distance to sandeel grounds, dis-
tance to coast, average water depth, SST- SD- 
Space20 and SST- SD- Time (ordered according 
to decreasing Chi- square scores; Fig. 4). This 
model also significantly outperformed a simple 
(null) model assuming a uniform distribution 

of porpoises. Slope dropped out during model 
selection, since the confidence band included 
zero throughout the covariate’s range. The ratio 
of the observed to model- predicted density es-
timates for the entire study area was 0.97. No 
significant autocorrelation in model residuals 
could be detected within the first 10 lags.

Day length and the tensor product smooth of 
location and SST proved to be important predic-
tors and good proxies for “season,” allowing dy-
namic predictions in both space and time. The 
inclusion of a three- dimensional tensor product 
that includes spatial components (such as coor-
dinates x and y) in conjunction with an ecolog-
ically sound variable is a common approach to 
capture local fluctuations of the respective eco-
logical variable (e.g., Augustin et al. 2013, Wil-
liams et al. 2014). Densities generally increased 
with day length, with highest densities  predicted 
when day length exceeded 14.5 h during the 
months of June through August. Highest por-
poise density occurred at 150 km offshore and 
at depths between 25 and 40 m (Fig. 4). Further-
more, harbor porpoise densities increased with 
SST- SD- Time, that is, higher probability for SST- 
fronts, and decreased with distance to sandeel 
grounds (Fig. 4).

Seasonal predictions
Our spatial predictions of porpoise density 

across the central and southeastern North Sea 

Fig. 3. Seasonal coverage of transect segments in 2005–2013, for spring (Mar.– May), summer (Jun.– Aug.), 
and fall (Sep.– Nov.). Effort segments are shown in gray, sighting positions in red.
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are consistent with previously described sea-
sonal patterns of porpoises in the respective 
national waters (e.g., Gilles et al. 2009, 2011, 
Haelters et al. 2011, 2015, Scheidat et al. 2012, 
Geelhoed et al. 2013). The density map for the 
spring season showed major hotspots of harbor 
porpoises in the southern and southeastern part 
of the North Sea, mainly inshore close to the 
Belgian and Dutch coasts extending toward the 
German coast off the East Frisian Islands 
(Fig. 5). The model predicted high densities 
in the area of the Sylt Outer Reef in the German 
North Sea as well as north off the coast of 
Jutland in Denmark. Another hotspot in spring 
was identified at the Dogger Bank and north-
west of this large sandbank. No survey data 
were available in spring for this region, and 
hence the model predictions should be seen 
as spatial and temporal extrapolations. Standard 
deviations for both the Dogger Bank and north-
ern Jutland areas were generally higher than 
those of other regions where survey data were 
available. The higher model uncertainties in 

these regions also resulted in larger 90% CIs 
(Fig. 5). Density predictions for these areas 
should thus be viewed with caution.

In contrast to spring, harbor porpoise hotspots 
in summer shifted toward offshore and western 
areas, and a large hotspot was present off the 
German and Danish west coast that extended 
toward the Dogger Bank (Fig. 6). The hotspot 
off the East and West Frisian Islands identified 
in spring was still present in summer, although 
smaller in size.

The predicted density in fall was lower than in 
the other seasons. The distribution was  spatially 
heterogeneous and areas with higher densities 
were predicted north- west of the Dogger Bank 
and off the German and Danish west coasts 
(Fig. 7).

Model- based abundance
Seasonal model- based predictions of abun-

dance were similar in spring and summer; but 
the predicted abundance in fall was about a 
third lower than the summer/spring abundances 

Table 3. Candidate models fitted to the full suite of survey data, using the no. porpoise sightings as response 
variable, and associated goodness of fit measures. Theta = value of adjustment parameter identified from the 
negative binomial distribution. Offset = log(effective area searched in km2).

Model Theta Model formula REML AIC (ΔAIC) % Dev. ASPE Sum ASPE

1 0.80 s(x,y) + s(SST) + te(SST, dayl) 
+ s(SST- SD- Time) + s(SST- SD- 
Space20) + s(depth) +  
s(dist to coast) + s(dist to 
sandeel) + offset

19164.6 38175.7 (130.4) 23.7 2.62 14.06

2 0.79 s(x,y) + s(SST) + te(SST, dayl) 
+ s(SST- SD- Time) + s(SST- SD- 
Space20) + s(dist to coast)  
+ s(dist to sandeel) + offset

19185.6 38225.9 (180.6) 23.3 2.62 14.06

3 0.79 s(x,y) + s(SST) + te(SST, dayl) 
+ s(SST- SD- Time) + s(SST- SD- 
Space20) + s(depth) + s(dist to 
sandeel) + offset

19169.5 38191.6 (146.3) 23.5 2.62 14.00

4 0.83 te(x,y,SST) + s(dayl) + s(SST- SD- 
Time) + s(SST- SD- Space20) 
+ s(depth) + s(dist to coast) 
+ s(dist to sandeel) + offset

19107.7 38045.3 (0) 24.7 2.60 13.84

5 0.82 te(x,y,SST) + s(dayl) + s(SST- SD- 
Time) + s(SST- SD- Space20) 
+ s(dist to coast) + s(dist to 
sandeel) + offset

19124.1 38083.1 (37.8) 24.4 2.60 13.86

6 0.81 te(x,y,SST) + s(dayl) + s(SST- SD- 
Time) + s(SST- SD- Space20) 
+ s(depth) + s(dist to sandeel) 
+ offset

19128.0 38117.6 (72.3) 24.2 2.61 13.85

Notes: REML, Restricted maximum likelihood; AIC, Akaike’s information criterion; %Dev, percentage of deviance explained 
by the model. ASPE (average squared prediction error) was calculated across all segments within the entire study area. Sum 
ASPE = sum of ASPE across all individual- year cross- validation steps.
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(Table 4). The difference among seasons was, 
however, not significant.

The same relationship was found when 
estimating model- based abundance for the 
equivalent area covered in all three seasons 
(i.e., the area coverage in spring, see Fig. 3; 
size = 119,240 km2), resulting in estimated 
abundances of 129,922 (95% CI: 91,556–184,365) 
in spring, 118,322 (95% CI: 80,259–174,437) in 
summer and 72,105 individuals in fall (95% CI: 
49,850–104,295).

The sources of uncertainty in the abundance 
estimation differ substantially. The  highest 
 uncertainty in the abundance estimate is caused 
by high CVs for esw and g(0), whereas the uncer-
tainty caused by group size estimation and mod-
el specification are relatively low (Table 4).

We also compared the model- based abun-
dance estimates for all three seasons between 
two grid resolutions (5 × 5 and 10 × 10 km) and 
found that they were identical, consistent with 

what is expected from spatial models (Miller 
et al. 2013).

For further quality assurance we compared 
previously published design- based standard line- 
transect (LT) abundance estimates within individ-
ual national and SCANS II strata to model- based 
estimates derived from the daily density predic-
tions for the same time period in each stratum 
(Fig. 8). The confidence limits for the model- based 
abundance estimates, as predicted by the best 
model for certain spatio- temporal subsets, overlap 
with the 95% CIs of LT estimate for all examined 
survey strata. The apparent large  difference for 
SCANS II block U is attributable to the greater un-
certainty in both estimates for this stratum (Fig. 8).

DISCUSSION

Our habitat- based density model provides 
fine- scale information on the seasonal density 
and distribution of harbor porpoises in the 

Fig. 4. Functional plots of environmental variables relative to harbor porpoise density as indicated by the 
estimated smooth functions for the selected covariates in the best model. Plots of 1- dim smooths are shown, 
whereas the 3- dim tensor product smooth of location and SST (te(x, y, SST)) cannot be displayed. Estimated 
degrees of freedom (edf) for nonlinear fits are provided in parentheses on the y- axes. Hatch marks on the  
 x-axes show sample values and range of samples. The shaded areas (2× standard error bands) denote the 95% 
Bayesian confidence intervals (CI). Note for interpretation that some CIs tend to be very large at the higher 
edges of the observed covariate values, where sampling was limited. In general, the range of partial residual 
values on the y- axis provides a visual cue of how important a variable might be in concert with all the selected 
predictors.
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Fig. 5. Predicted harbor porpoise densities in the North Sea in spring (Mar.–May). Upper panel: The overlaid 
contours are associated jackknife standard deviations (SD), whereas the black and white dashed boundary 
depicts the sampling coverage in spring (concave hull of survey segments; also see Fig. 3). Lower panel: Lower 
and upper lognormal 90% confidence intervals (Lower 90% CI and Upper 90% CI) for the seasonal density based 
on the jackknife samples.
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Fig. 6. Predicted harbor porpoise densities in the North Sea in summer (Jun.– Aug.) Upper panel: The overlaid 
contours are associated jackknife standard deviations (SD). Lower panel: Lower and upper lognormal 90% 
confidence intervals (Lower 90% CI and Upper 90% CI) for the seasonal density based on the jackknife samples.
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Fig. 7. Predicted harbor porpoise densities in the North Sea in fall (Sep.– Nov.). Upper panel: The overlaid 
contours are associated jackknife standard deviations (SD), whereas the black and white dashed boundary 
depicts the sampling coverage in fall (concave hull of survey segments; also see Fig. 3). Lower panel: Lower and 
upper lognormal 90% confidence intervals (Lower 90% CI and Upper 90% CI) for the seasonal density based on 
the jackknife samples.
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North Sea. We built the model using an un-
precedented data set that included systematic 
survey data collected in a large part of the 
North Sea over a 9- yr period. By analyzing 
these data jointly we were able to significantly 
improve our understanding of which habitats 
and environmental conditions influence the 
distribution and abundance of harbor porpoises 
in the North Sea and to identify geographic 
regions of high porpoise density in different 
seasons. The novel, daily predictions of habitat- 
based density allow the maximum flexibility 
to meet a variety of scales for management, 
as the daily predictions of porpoise density can 
be averaged over different time scales (e.g., 
weeks, months, seasons, years) depending on 
management needs; along with estimates of 
temporal variation and model uncertainty.

Since our surveys were repeated throughout 
the study period we were able to evaluate the 
predictive power of our habitat models (Guisan 
and Zimmermann 2000) on “novel” data sets 
collected in the same region but during another 
year, which revealed that our models were ro-
bust against missing years of data.

The applied methods are transferable to any 
other species and ecosystem, and by building 
on the experience and workflows from cetacean 
studies conducted in the north Pacific, we set 
an important milestone on how to standardize 
methods, with regard to model selection and val-
idation, across habitats.

Previously, a broad- scale prediction of har-
bor porpoise distribution in the complete North 
Sea was based on the SCANS II survey in July 
2005 (Hammond et al. 2013). SCANS II indicat-
ed an  increased porpoise density south of 56° N, 
 approximately twice as much as estimated for 
the previous survey in 1994 (SCANS, Hammond 
et al. 2002). As the estimated total abundance 
did not change between 1994 and 2005, it was 
assumed that this was due to a southward shift 
in porpoise distribution. By combining the large- 
scale SCANS II survey with the more frequent, 
fine- scale national and Dogger Bank surveys, we 
were able to develop seasonal maps that improve 
our understanding of spatial and temporal vari-
ability in porpoise density and distribution in the 
North Sea. By shifting our focus from the nation-
al perspective to a more international perspective 
it  becomes clear that similar seasonal inshore/ 
offshore distribution patterns exist in adjacent 
areas.

What is striking is the comparable low densi-
ty in fall. On one hand, this could be a sampling 
artifact as effort has been low and varied in spa-
tially small areas (Figs. 2 and 3). As the survey 
data collected in fall were mostly based on na-
tional monitoring schemes, offshore areas were 
not covered and the predicted densities are at 
unconfirmed low levels. On the other hand, it is 
also possible that the movement pattern of the 
North Sea porpoises indeed leads to a—yet un-
documented—northern (or southern) shift out of 
our study area. Unfortunately, only few publica-
tions exist on the distribution of harbor porpois-
es in offshore waters. The only satellite telemetry 
study with harbor porpoises in the area is Svee-
gaard et al. (2011), in which 64 porpoises were 
tagged in the Skagerrak and Inner Danish waters 
between 1997 and 2007. This study showed pro-
nounced seasonal variations in the usage of sev-
eral high- density areas. However, most tagged 
individuals did not move into the central and 
southern North Sea, and none moved south of 
54° N and into the German and Dutch EEZ (Svee-
gaard et al. 2011). In November 2011, an acoustic 
survey was conducted in the central North Sea 
across the Dogger Bank. Porpoises were detected 
acoustically throughout the study area; however, 
detection rates were higher over the UK region of 
the Bank than either the Dutch or German regions 
(MCR 2012). These findings provide support for 

Table 4. Model- based abundance (N) estimate for 
harbor porpoises in the North Sea study area (as 
 depicted in Figs. 5–7; area size = 411,000 km2). CVall 
(N) includes weighted measures of all sources of 
variance (model specification, mean group size, and 
detection probabilities).

Parameter Spring Summer Fall

Abundance (N) 372,167 361,146 228,913
CV (model) 0.006 0.001 0.003
CV (group size) 0.01 0.01 0.02
CV (weighted 

mean esw)
0.18 0.12 0.19

CV (ship g(0)) – 0.16 –
CVall (N) 0.18 0.20 0.19
Lower 95% CI 260,658 243,827 159,264
Upper 95% CI 531,380 534,913 329,022
Density 0.91 0.88 0.56

Note: CI, Confidence interval.
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the predicted hotspot west of the Dogger Bank in 
fall. However, we have very little means to assess 
the fall distribution of porpoises thoroughly and 
any future management action and research plan 
should address this essential data gap.

The role of environmental variables on 
porpoise density

This study is one of the first that included 
a measure of prey occurrence, namely sandeel, 
as a covariate in the porpoise density model. 

However, rather than using actual sandeel abun-
dance, the distance to sandeel habitats was 
used. This approach acknowledges that sandeels 
are mobile and may move outside the known 
grounds. The sandeel is an important prey 
species for harbor porpoises and other top 
predators in the North Sea (e.g., Santos and 
Pierce 2003, Leopold and Meesters 2015). 
Sandeels are forage fish, described as major 
food- web energy conveyers (Christensen et al. 
2013) and as such are important high- energy 

Fig. 8. Model- based abundance estimates (model) for harbor porpoises in comparison to those derived from 
design- based line- transect (LT) surveys, plotted in chronological order (first by source/country then by month/
year). Error bars represent 95% confidence intervals. See Fig. 1 for abbreviations and locations of strata. Sources 
of LT estimates: (1) Hammond et al. 2013, (2) Haelters et al. 2011, (3) Haelters et al. 2015, (4) Scheidat et al. 2012, 
(5) Geelhoed et al. 2013, (6) Gilles et al. 2012a, (7) Geelhoed et al. 2014, (8) Dähne et al. 2013, (9) Gilles et al. 2014a, 
(10) Gilles et al. 2012b, (11) Gilles et al. 2014b.



June 2016 v Volume 7(6) v Article e0136717 v www.esajournals.org

GILLES ET AL. 

mid- trophic prey for piscivorous fish, such as 
gadoids, that are also porpoise prey.

An underlying hypothesis of our modeling 
 approach and the selected candidate predic-
tors is that harbor porpoises respond to spatial 
 gradients of oceanographic variables. These 
 relationships may vary across study areas, as 
underlying ecological processes and ranges of 
available predictor values differ. In this study, we 
focused on remotely sensed SST and temporal 
and spatial variation therein as the main dynam-
ic predictors, because spatial gradients of SST 
indicate the presence of frontal systems where 
prey may congregate (Franks 1992). In addition, 
SST fronts are typically co- located with fronts in 
other water properties such as salinity, density, 
and chlorophyll (Belkin et al. 2009). Indeed, stud-
ies on the distribution of pelagic species demon-
strate that SST fronts are important habitat fea-
tures (Sims and Quayle 1998, Becker et al. 2010, 
Scales et al. 2014).

Except for the large and established fronts, 
the North Sea fronts are very dynamic, and 
environmental conditions can change over rel-
atively short temporal and fine spatial scales 
(Pingree et al. 1975). For our model it was im-
portant to capture the day- to- day movements 
of harbor porpoises foraging for patchy prey 
items, which in turn are responding to short- 
term oceanographic variations. Longer term, 
seasonal effects could be captured effective-
ly using SST and day length in the model by 
subsequently averaging the predicted daily 
harbor porpoise densities within each season. 
Physiographic or static predictors, such as wa-
ter depth, slope or distance to coast, were good 
proxies for harbor porpoise distribution, also in 
combination with  dynamic  predictors like tidal 
range or currents as described for western Scot-
land and Wales ( Pierpoint 2008, Marubini et al. 
2009, Embling et al. 2010, Isojunno et al. 2012, 
Booth et al. 2013). In other areas tidally driv-
en upwelling zones (Skov and  Thomsen 2008), 
fronts (Johnston et al. 2005) and mean seasonal 
SST (Gilles et al. 2011) have also been shown to 
be linked to the distribution and movements of 
harbor porpoises.

Limitations and caveats
The SCANS II survey was conducted only 

during one summer, and no comparable survey 

data were available in the northern part of the 
study area during spring and fall. Our use of 
the multiseason data set to model porpoise– 
habitat relationships assumed that at least some 
of these relationships would be stable across 
seasons. This assumption cannot presently be 
evaluated, but we were appropriately cautious 
with our interpretation and have attempted to 
characterize the underlying uncertainty in our 
density maps. These spatially explicit estimates 
of uncertainty show that density predictions 
in regions and seasons with little or no effort 
have greater uncertainty (see Figs. 5–7). In ad-
dition, we explicitly accounted for complex 
sources of uncertainties throughout all steps of 
data analysis and model development.

The explained deviance of 24% is relatively 
good for cetacean habitat modeling studies (cf. 
e.g., Becker et al. 2012, Mannocci et al. 2014, For-
ney et al. 2015), although a considerable part of the 
variation in the porpoise distribution remained 
unexplained. It would be naïve to believe that 
we would be able to include all relevant drivers 
of porpoise distributions, or that we have neces-
sarily identified the best proxy variables to use 
for model- based predictions. Data on prey abun-
dance may have increased explanatory power, but 
these data are currently not available at the ap-
propriate spatial and temporal scales. Addition-
ally, environmental dynamics that aggregate prey 
are often more consistent and Torres et al. (2008) 
found in a direct comparison that their model was 
more successful when using environmental vari-
ables instead of prey data as predictor variables.

Other predictors we considered were either 
(1) not available for the complete survey peri-
od (e.g., wind stress (upwelling) from Quik-
SCAT, only available through November 2009, 
and its replacement ASCAT showed persistent 
differences during the short period of overlap), 
(2) had large data gaps on daily or even weekly 
resolution (e.g., chlorophyll- a), or (3) were not 
 appropriate for our study area (e.g., some studies 
include deviation of sea surface height (Palacios 
et al. 2006, Forney et al. 2015); however, remotely 
sensed altimeter data are not useful for the North 
Sea due to the strong tides).

Management and conservation perspectives
This study currently presents the most com-

prehensive, seasonal habitat- based estimates of 
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porpoise density in the North Sea, and it is 
intended to support the management of an-
thropogenic impacts (e.g., regulate timing of 
pile- driving for offshore renewable energy in-
stallations). This project demonstrates that an-
nual small- scale (i.e., EEZ- wide) surveys are 
important to assess trends and seasonal distri-
bution patterns of small cetaceans. However, 
as national waters do not represent biologically 
meaningful management units, a coordinated 
monitoring effort and the rigorous application 
of standardized methods is needed to fulfill 
requirements of the EU Marine Strategy 
Framework Directive. To allow assessment of 
broader- scale population distribution shifts, a 
SCANS- type survey with larger spatial coverage 
should be undertaken on a more regular basis 
(e.g., every 6–8 yr). This would also benefit 
the 6- yr time scale that is implied in some EU 
legislation, for example, the Habitats Directive. 
Additionally, knowledge of species– habitat re-
lationships is important for the assessment of 
stock status and trends, because it allows the 
explicit incorporation of habitat information 
when estimating abundance and identifying 
management units. In the context of marine 
spatial planning, a habitat- based model is re-
quired since it will allow for predictions of 
porpoise densities within areas of special interest 
for any day within the original survey time 
span. Using day length as a proxy for season-
ality makes such a model a valuable tool for 
any mesoscale- planning endeavor within the 
study region.

A challenge for scientists and regulators is 
the assessment of cumulative effects of multi-
ple anthropogenic stressors on population dy-
namics of marine mammals and the prediction 
of population- level consequences of disturbance 
(e.g., Nowacek et al. 2015). This will become in-
creasingly important in the face of a changing cli-
mate and increased anthropogenic development 
in marine habitats and hence to ensure a sustain-
able management of the population.

Future work
Forecasting is an emerging methodological 

application within the field of SDM and applies 
new combinations of consolidated methods. 
Advances in remote sensing and ocean model 
products allow for predictions of species density 

at a variety of temporal scales. This is import-
ant for the assessment of current and future 
risks to marine mammals in a changing envi-
ronment. Becker et al. (2012) showed that the 
Regional Ocean Modeling System (ROMS) SST 
forecasts were promising for forecasting of 
cetacean density. The advantage of our model 
is that it uses only SST as a dynamic predictor, 
thus, a similar approach could be feasible, for 
short- term and by including climate change 
scenarios.

The season- specific population density maps  
presented here are an essential input for 
individual- based models (IBMs), where popu-
lation dynamics can be predicted based on sim-
ulated animals that move in the landscape in a 
realistic manner (Grimm and Railsback 2005). 
For the harbor porpoise an IBM has already been 
developed for the inner Danish waters (Nabe- 
Nielsen et al. 2013, 2014), where local porpoise 
densities were used as a proxy for food availabil-
ity. Animals were simulated to respond to distur-
bances by being displaced, resulting in reduced 
food intake and potentially reduced population 
sizes. The output of this study will make it pos-
sible to re- parameterize this model for North Sea 
conditions. This will be an important step toward 
ensuring that harbor porpoises are managed sus-
tainably in the presence of bycatch, noise from 
ships, wind- farm constructions and other types 
of anthropogenic stressors, which notably over-
lap to a great degree in the North Sea (Halpern 
et al. 2015).

ACKNOWLEDGMENTS

This study is part of the DEPONS project (www.
depons.au.dk) funded by the offshore wind developers 
Vattenfall, Forewind, SMart Wind, ENECO 
Luchterduinen and East Anglia Offshore Wind. Co- 
funding was provided by the Danish Nature Agency 
and Rijkswater staat NL. We thank J.K. Larsen for 
coordinating this subproject. A. Gilles was supported 
by the Humboldt Foundation. We thank R. 
Mendelssohn for his assistance with ERDDAP and 
A. Rindorf for providing the locations of sandeel 
grounds. We are grateful to cruise leaders, observers, 
and pilots collecting the survey data. The surveys in 
Germany were funded by the Federal Ministry for 
the Environment, Nature Conservation, Building and 
Nuclear Safety (BMUB; projects MINOS, MINOSplus, 
and StUKplus; project ref. no. 0327520, 0329946/B/C/D, 

http://www.depons.au.dk
http://www.depons.au.dk


June 2016 v Volume 7(6) v Article e0136719 v www.esajournals.org

GILLES ET AL. 

and 0327689A), the Federal Agency for Nature 
Conservation (BfN; projects EMSON, “Development 
of a harbor porpoise monitoring concept to fulfil the 
EU Habitats Directive reporting requirements” and 
“Monitoring of marine mammals in the framework 
of NATURA 2000”) and the Federal Ministry of Food 
and Agriculture (BMEL; 514- 33.29/03HS059). The 2011 
Dogger Bank survey was funded by the BfN with 
co- funding from the Joint Nature Conservation 
Committee (JNCC, UK), the Danish Nature Agency 
and the Ministry of Economic Affairs, Agriculture 
and Innovation of The Netherlands (EL & I). The 
surveys in Dutch waters and on the Dogger Bank 
2013 were funded by the Dutch Ministry of Economic 
Affairs (EZ; BO- 11- 011.04- 004, BO- 11- 011.02- 004, BO- 
011.04- 030), the Ministry of Infra structure and the 
Environ ment (Rijkswaterstaat) and the UK’s Depart-
ment for Environment, Food and Rural Affairs 
(DEFRA). Danish survey data were collected as part 
of the Danish harbor porpoise surveillance  program, 
NOVANA, funded by The Nature Agency under the 
Danish Ministry of Environ ment. Belgian data result 
from the monitoring program on the ecological effects 
of offshore wind farms in Belgian waters. We also 
thank P.S. Hammond for providing the SCANS II 
data, collected in project LIFE04NAT/GB/000245. We 
thank J.V. Redfern and two anonymous reviewers 
for their constructive comments on an earlier draft.

LITERATURE CITED

Augustin, N. H., V. M. Trenkel, S. N. Wood, and P. 
Lorance. 2013. Space- time modelling of blue ling 
for fisheries stock management. Environmetrics 
24:109–119.

Austin, M. 2007. Species distribution models and 
ecological theory: a critical assessment and some 
possible new approaches. Ecological Modelling 
200:1–19.

Becker, E. A., K. A. Forney, M. C. Ferguson, D. G. Fo-
ley, R. C. Smith, J. Barlow, and J. V. Redfern. 2010. 
Comparing California Current cetacean- habitat 
models developed using in situ and remotely 
sensed sea surface temperature data. Marine Ecol-
ogy Progress Series 413:163–183.

Becker, E. A., D. G. Foley, K. A. Forney, J. Barlow, J. 
V. Redfern, and C. L. Gentemann. 2012. Forecast-
ing cetacean abundance patterns to enhance man-
agement decisions. Endangered Species Research 
16:97–112.

Becker, E. A., K. Forney, D. G. Foley, R. C. Smith, T. 
J. Moore, and J. Barlow. 2014. Predicting season-
al density patterns of California cetaceans based 
on habitat models. Endangered Species Research 
23:1–22.

Belkin, I. M., P. C. Cornillon, and K. Sherman. 2009. 
Fronts in large marine ecosystems. Progress in 
Oceanography 81:223–236.

Bertram, C., and K. Rehdanz. 2013. On the environ-
mental effectiveness of the EU Marine Strategy 
Framework Directive. Marine Policy 38:25–40.

Bivand, R., and C. Rundel. 2014. rgeos: interface to ge-
ometry engine. Open source (GEOS). R package 
ver. 0.3-8. http://CRAN.R-project.org/package=rgeo

Booth, C., C. Embling, J. Gordon, S. Calderan, and P. 
Hammond. 2013. Habitat preferences and distri-
bution of the harbour porpoise Phocoena phocoena 
west of Scotland. Marine Ecology Progress Series 
478:273–285.

Brockmann, U. H., R. W. P. M. Laane, and H. Postma. 
1990. Cycling of nutrient elements in the North Sea. 
Netherlands Journal of Sea Research 26:239–264.

Buckland, S. T., D. R. Anderson, K. P. Burnham, J. L. 
Laake, D. L. Borchers, and L. Thomas. 2001. Intro-
duction to distance sampling. Estimating abun-
dance of biological populations. Oxford University 
Press, New York, New York, USA.

Christensen, A., M. Butenschön, Z. Gürkan, and I. J. 
Allen. 2013. Towards an integrated forecasting sys-
tem for fisheries on habitat- bound stocks. Ocean 
Science 9:261–279.

Dähne, M., A. Gilles, K. Lucke, V. Peschko, S.  Adler, 
K. Krügel, J. Sundermeyer, and U. Siebert. 2013. 
 Effects of pile- driving on harbour porpoises 
 (Phocoena phocoena) at the first offshore wind farm 
in Germany. Environmental Research Letters 
8:025002.

Das, K., A. Vossen, K. Tolley, G. A. Vikingsson, K. 
Thron, G. Müller, W. Baumgärtner, and U. Siebert. 
2006. Interfollicular fibrosis in the thyroid of the 
harbour porpoise: An endocrine disruption? Ar-
chives of Environmental Contamination and Tox-
icology 51:720–729.

Dormann, C. F. 2007. Effects of incorporating spatial 
autocorrelation into the analysis of species distri-
bution data. Global Ecology and Biogeography 
16:129–138.

Dormann, C. F., et al. 2013. Collinearity: a review 
of methods to deal with it and a simulation 
study evaluating their performance. Ecography 
36:027–046.

Dyndo, M., D. M. Wiśniewska, L. Rojano-Doñate, and 
P. T. Madsen. 2015. Harbour porpoises react to low 
levels of high frequency vessel noise. Scientific Re-
ports 5:11083.

Embling, C. B., P. A. Gillibrand, J. Gordon, J. Shrimp-
ton, P. T. Stevick, and P. S. Hammond. 2010. Using 
habitat models to identify suitable sites for marine 
protected areas for harbour porpoises (Phocoena 
phocoena). Biological Conservation 143:267–279.

http://CRAN.R-project.org/package=rgeo


June 2016 v Volume 7(6) v Article e0136720 v www.esajournals.org

 GILLES ET AL.

EU-COM. 1992. Council Directive 92/43/EEC of 21 
May 1992 on the conservation of natural habitats 
and of wild fauna and flora. Official Journal of the 
European Union L 206:7–50.

EU-COM. 2008. Directive 2008/56/EC of the Europe-
an Parliament and of the Council of 17 June 2008 
establishing a framework for community action in 
the field of marine environmental policy. Official 
Journal of the European Union L 164:19–40.

Forney, K., M. Ferguson, E. Becker, P. Fiedler, J. Red-
fern, J. Barlow, I. Vilchis, and L. Ballance. 2012. 
Habitat- based spatial models of cetacean density 
in the eastern Pacific Ocean. Endangered Species 
Research 16:113–133.

Forney, K. A., E. A. Becker, D. G. Foley, J. Barlow, and 
E. M. Oleson. 2015. Habitat- based models of ceta-
cean density and distribution in the central North 
Pacific. Endangered Species Research 27:1–20.

Franks, P. 1992. Sink or swim, accumulation of biomass 
at fronts. Marine Ecology Progress Series 82:1–12.

Geelhoed, S. C. V., M. Scheidat, R. S. A. van  Bemmelen, 
and G. Aarts. 2013. Abundance of harbour 
 porpoises (Phocoena phocoena) on the Dutch Con-
tinental Shelf, aerial surveys in July 2010- March 
2011. Lutra 56:45–57.

Geelhoed, S. C. V., R. S. A. van Bemmelen, and J. P. 
 Verdaat. 2014. Marine mammal surveys in the 
wider Dogger Bank area summer 2013. IMARES 
Report (no. C016/14) for Department for Environ-
ment, Food and Rural Affairs and Ministry of Eco-
nomic Affairs, 27 pp. http://edepot.wur.nl/293005

Gilles, A., M. Scheidat, and U. Siebert. 2009. Season-
al distribution of harbour porpoises and possible 
interference of offshore wind farms in the Ger-
man North Sea. Marine Ecology Progress Series 
383:295–307.

Gilles, A., S. Adler, K. Kaschner, M. Scheidat, and U. 
Siebert. 2011. Modelling harbour porpoise seasonal 
density as a function of the German Bight environ-
ment: implications for management. Endangered 
Species Research 14:157–169.

Gilles, A., V. Peschko, M. Scheidat, and U. Siebert. 
2012a. Survey for small cetaceans over the Dog-
ger Bank and adjacent areas in summer 2011. AS-
COBANS working paper, AC19/Doc.5-08, 13 pp. 
http://tinyurl.com/j7xwene

Gilles, A., V. Peschko, and U. Siebert. 2012b. Monitor-
ing von marinen Säugetieren 2012 in der deutschen 
Nord- und Ostsee. Visuelle Erfassung von Sch-
weinswalen. Final report for the German Federal 
Agency for Nature Conservation (BfN), p 11-51 
[in German with English summary]. http://tinyurl.
com/jtbgsgm

Gilles, A., M. Dähne, K. Ronnenberg, S. Viquerat, S.  Adler, 
O. Meyer-Klaeden, V. Peschko, and U.  Siebert. 2014a. 

Ergaenzende Untersuchungen zum  Effekt der Bau- 
und Betriebsphase im Offshore-Testfeld alpha ven-
tus auf marine Säugetiere. in A. Beiersdorf, M. Boeth-
ling, A. Binder, and N. Nolte, editors. Ökologische 
Begleitforschung am Offshore-Testfeldvorhaben 
alpha ventus zur Evaluierung des Standarduntersu-
chungs konzeptes des BSH (StUKplus). Final report, 
116 pp [in  German with English summary]. http://
tinyurl.com/jf65ren

Gilles, A., S. Viquerat, and U. Siebert. 2014b. Monitor-
ing von marinen Säugetieren 2013 in der deutschen 
Nord- und Ostsee. Visuelle Erfassung von Sch-
weinswalen. Final report for the German Federal 
Agency for Nature Conservation (BfN), p 1-53 [in 
German with English summary]. http:// tinyurl.
com/hz756z6

Goodman, L. A. 1960. On the exact variance of prod-
ucts. Journal of the American Statistical Associa-
tion 55:708–713.

Gregr, E. J., M. F. Baumgartner, K. L. Laidre, and D. 
M. Palacios. 2013. Marine mammal habitat models 
come of age: the emergence of ecological and man-
agement relevance. Endangered Species Research 
22:205–212.

Grimm, V., and S. Railsback. 2005. Individual-based 
modeling and ecology. Princeton University Press, 
Princeton, New Jersey, USA.

Guisan, A., and N. E. Zimmermann. 2000. Predictive 
habitat distribution models in ecology. Ecological 
Modelling 135:147–186.

Haelters, J., F. Kerckhof, T. G. Jacques, and S. Degraer. 
2011. The harbour porpoise Phocoena phocoena in 
the Belgian part of the North Sea: trends in abun-
dance and distribution. Belgian Journal of Zoology 
141:75–84.

Haelters, J., V. Dulière, L. Vigin, and S. Degraer. 2015. 
Towards a numerical model to simulate the ob-
served displacement of harbour porpoises Phocoe-
na phocoena due to pile driving in Belgian waters. 
Hydrobiologia 756:105–116.

Halpern, B. S., et al. 2008. A global map of human im-
pact on marine ecosystems. Science 319:948–952.

Halpern, B. S., et al. 2015. Spatial and temporal chang-
es in cumulative human impacts on the world’s 
ocean. Nature Communications 6:7615.

Hammond, P. S., P. Berggren, H. Benke, D. L. Borchers, 
A. Collet, M. P. Heide-Jorgensen, S. Heimlich, A. 
R. Hiby, M. F. Leopold, and N. Øien. 2002. Abun-
dance of harbour porpoises and other cetaceans in 
the North Sea and adjacent waters. Journal of Ap-
plied Ecology 39:361–376.

Hammond, P. S., et al. 2013. Cetacean abundance and 
distribution in European Atlantic shelf waters to 
inform conservation and management. Biological 
Conservation 164:107–122.

http://edepot.wur.nl/293005
http://tinyurl.com/j7xwene
http://tinyurl.com/jtbgsgm
http://tinyurl.com/jtbgsgm
http://tinyurl.com/jf65ren
http://tinyurl.com/jf65ren
http://tinyurl.com/hz756z6
http://tinyurl.com/hz756z6


June 2016 v Volume 7(6) v Article e0136721 v www.esajournals.org

GILLES ET AL. 

Hansen, J. W., editor. 2015. Marine Areas 2013. NOVA-
NA. Aarhus University, Danish Centre for Envi-
ronment and Energy, 142 pp. Scientific report from 
DCE no. 123 [in Danish with English summary]. 
http://dce2.au.dk/pub/SR123.pdf

Hastie, T. J., and R. J. Tibshirani. 1990. Generalized 
 additive models. Chapman & Hall, London, UK.

Heiberger, R. M. 2015. HH: statistical analysis and 
data display. R package ver. 3.1-15. http://CRAN.R- 
project.org/package=HH

Hiby, A. R. 1999. The objective identification of dupli-
cate sightings in aerial survey for porpoise. Pages 
179–189 in G. W. Garner, S. C. Amstrup, J. L. Laake, 
B. F. J. Manly, L. L. McDonald, and D. G. Robert-
son, editors. Marine mammal survey and assess-
ment methods. Balkema, Rotterdam.

Hiby, A. R., and P. Lovell. 1998. Using aircraft in tan-
dem formation to estimate abundance of harbour 
porpoise. Biometrics 54:1280–1289.

Hijmans, R. J. 2015a. raster: geographic data analy-
sis and modeling. R package ver. 2.3-24. http://
CRAN.R-project.org/package=raster

Hijmans, R. J. 2015b. geosphere: spherical trigonome-
try. R package ver. 1.3-13. http://CRAN.R-project.
org/package=geosphere

IJsseldijk, L. L., K. C. J. Camphuysen, J. J. Nauw, and 
G. Aarts. 2015. Going with the flow: tidal influ-
ence on the occurrence of the harbour porpoise 
(Phocoena phocoena) in the Marsdiep area, The 
Netherlands. Journal of Sea Research 103:129–137.

Isojunno, S., J. Matthiopoulos, and P. Evans. 2012. 
 Harbour porpoise habitat preferences: robust 
spatio- temporal inferences from opportunistic 
data. Marine Ecology Progress Series 448:155–170.

Jensen, H., A. Rindorf, P. J. Wright, and H. Mosegaard. 
2011. Inferring the location and scale of mixing be-
tween habitat areas of lesser sandeel through in-
formation from the fishery. ICES Journal of Marine 
Science 68:43–51.

Johnston, D. W., A. J. Westgate, and A. J. Read. 2005. 
Effects of fine- scale oceanographic features on the 
distribution and movements of harbour porpois-
es Phocoena phocoena in the Bay of Fundy. Marine 
Ecology Progress Series 295:279–293.

JPL. 2010. JPL MUR MEaSUREs Project. GHRSST Lev-
el 4 MUR Global Foundation sea surface tempera-
ture analysis. Ver. 2. PO.DAAC, Pasadena, Califor-
nia, USA.

Kiszka, J. J., M. R. Heithaus, and A. J. Wirsing. 2015. 
Behavioural drivers of the ecological roles and 
importance of marine mammals. Marine Ecology 
Progress Series 523:267–281.

Krause, G., G. Budeus, D. Gerdes, K. Schaumann, and 
K. Hesse. 1986. Frontal systems in the German 
Bight and their physical and biological effects. 

Pages 119–140 in J. C. J. Nihoul, editor. Marine 
 interfaces ecohydrodynamics. Elsevier, Amster-
dam, The Netherlands.

Leopold, M. F., and E. H. W. G. Meesters. 2015. Not 
all harbour porpoises are equal: which factors de-
termine what individual animals should, and can 
eat? In: M.F. Leopold. Eat or be eaten: porpoise 
diet studies. Dissertation. Wageningen University, 
 Wageningen, The Netherlands: 28–55.

Lockyer, C. 2007. All creatures great and smaller: a 
study in cetacean life history energetics. Journal 
of the Marine Biological Association of the United 
Kingdom 87:1035–1045.

Mannocci, L., S. Laran, P. Monestiez, G. Dorémus, O. 
Van Canneyt, P. Watremez, and V. Ridoux. 2014. 
Predicting top predator habitats in the Southwest 
Indian Ocean. Ecography 37:261–278.

Marra, G., and S. N. Wood. 2011. Practical variable se-
lection for generalized additive models. Compu-
tational Statistics and Data Analysis 55:2372–2387.

Marubini, F., A. Gimona, P. G. H. Evans, P. J. Wright, 
and G. J. Pierce. 2009. Habitat preferences and in-
terannual variability in occurrence of the harbour 
porpoise Phocoena phocoena off northwest Scot-
land. Marine Ecology Progress Series 381:297–310.

Maxwell, S. M., et al. 2013. Cumulative human impacts 
on marine predators. Nature communications 4:2688.

MCR 2012. Final report for a survey for harbour por-
poises (Phocoena phocoena) of the Dogger Bank and 
southern North Sea conducted from R/V Song of 
the Whale 7-24 November 2011. Report prepared 
by Marine Conservation Research. 19 pp. http:// 
tinyurl.com/dyzu6bf

Miller, D. L., M. L. Burt, E. A. Rexstad, and L. Thomas. 
2013. Spatial models for distance sampling data: 
recent developments and future directions. Meth-
ods in Ecology and Evolution 4:1001–1010.

Moore, S. E. 2008. Marine mammals as ecosystem sen-
tinels. Journal of Mammalogy 89:534–540.

Nabe-Nielsen, J., J. Tougaard, J. Teilmann, K. Lucke, and 
M. C. Forchhammer. 2013. How a simple adaptive 
foraging strategy can lead to emergent home ranges 
and increased food intake. Oikos 122:1307–1316.

Nabe-Nielsen, J., R. M. Sibly, J. Tougaard, J. Teilmann, 
and S. Sveegaard. 2014. Effects of noise and by- 
catch on a Danish harbour porpoise population. 
Ecological Modelling 272:242–251.

Nauw, J., H. De Haas, and G. Rehder. 2015. A review of 
oceanographic and meteorological controls on the 
North Sea circulation and hydrodynamics with a 
view to the fate of North Sea methane from well 
site 22/4b and other seabed sources. Marine and 
Petroleum Geology 68:861–882.

Nowacek, D. P., C. W. Clark, D. Mann, P. J. Miller, H. 
C. Rosenbaum, J. S. Golden, M. Jasny, J. Kraska, 

http://dce2.au.dk/pub/SR123.pdf
http://CRAN.R-project.org/package=HH
http://CRAN.R-project.org/package=HH
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=geosphere
http://CRAN.R-project.org/package=geosphere
http://tinyurl.com/dyzu6bf
http://tinyurl.com/dyzu6bf


June 2016 v Volume 7(6) v Article e0136722 v www.esajournals.org

 GILLES ET AL.

and B. L. Southall. 2015. Marine seismic surveys 
and ocean noise: time for coordinated and prudent 
planning. Frontiers in Ecology and the Environ-
ment 13:378–386.

OSPAR 2008. OSPAR list of threatened and/or declin-
ing species and habitats. OSPAR agreement 2008-6. 
OSPAR, London, UK.

Otto, L., J. T. F. Zimmerman, G. K. Furnes, M. Mork, R. 
Saetre, and G. Becker. 1990. Review of the physical 
oceanography of the North Sea. Netherlands Jour-
nal of Sea Research 26:161–238.

Palacios, D. M., S. J. Bograd, D. G. Foley, and F. B. 
Schwing. 2006. Oceanographic characteristics of 
biological hot spots in the North Pacific: a remote 
sensing perspective. Deep- Sea Research II: Topical 
Studies in Oceanography 53:250–269.

Palacios, D. M., M. F. Baumgartner, K. L. Laidre, and 
E. J. Gregr. 2013. Beyond correlation: integrating 
environmentally and behaviourally mediated pro-
cesses in models of marine mammal distributions. 
Endangered Species Research 22:191–203.

Peschko, V., K. Ronnenberg, U. Siebert, and A. Gilles. 
2016. Trends of harbour porpoise (Phocoena phoco-
ena) density in the southern North Sea. Ecological 
Indicators 60:174–183.

Pierpoint, C. 2008. Harbour porpoise (Phocoena phoco-
ena) foraging strategy at a high energy, near- shore 
site in south- west Wales, UK. Journal of the Ma-
rine Biological Association of the United Kingdom 
88:1167–1173.

Pingree, R. D., P. R. Pugh, P. M. Holligan, and G. R. 
Forster. 1975. Summer phytoplankton blooms and 
red tides along tidal fronts in the approaches to the 
English Channel. Nature 258:672–677.

R Development Core Team. 2014. R: a language and 
environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria.

Redfern, J. V., et al. 2006. Techniques for cetacean- 
habitat modeling. Marine Ecology Progress Series 
310:271–295.

Santos, M. B., and G. J. Pierce. 2003. The diet of har-
bour porpoise (Phocoena phocoena) in the Northeast 
Atlantic. Oceanography and Marine Biology. An 
Annual Review 41:355–390.

Scales, K. L., P. I. Miller, L. A. Hawkes, S. N. Ingram, 
D. W. Sims, and S. C. Votier. 2014. REVIEW: on the 
front line: frontal zones as priority at- sea conserva-
tion areas for mobile marine vertebrates. Journal of 
Applied Ecology 51:1575–1583.

Scheidat, M., A. Gilles, K. Kock, and U. Siebert. 2008. 
Harbour porpoise Phocoena phocoena abundance in 

the southwestern Baltic Sea. Endangered Species 
Research 5:215–223.

Scheidat, M., H. Verdaat, and G. Aarts. 2012. Using ae-
rial surveys to estimate density and distribution of 
harbour porpoises in Dutch waters. Journal of Sea 
Research 69:1–7.

Siebert, U., C. Joiris, L. Holsbeek, H. Benke, K. Failing, 
K. Frese, and E. Petzingeri. 1999. Potential relation 
between mercury concentrations and necropsy 
findings in cetaceans from German waters of the 
North and Baltic Seas. Marine Pollution Bulletin 
38:285–295.

Simons, R. A. 2015. Environmental Research Division 
Data Access Program ERDDAP. http://coastwatch.
pfeg.noaa.gov/erddap

Sims, D. W., and V. A. Quayle. 1998. Selective foraging 
behaviour of basking sharks on zooplankton in a 
small- scale front. Nature 393:460–464.

Skov, H., and F. Thomsen. 2008. Resolving fine- scale 
spatio- temporal dynamics in the harbour porpoise 
Phocoena phocoena. Marine Ecology Progress Series 
373:173–186.

Sveegaard, S., J. Teilmann, J. Tougaard, R. Dietz, K. 
N. Mouritsen, G. Desportes, and U. Siebert. 2011. 
High- density areas for harbor porpoises (Phocoena 
phocoena) identified by satellite tracking. Marine 
Mammal Science 27:230–246.

Thompson, P. M., K. L. Brookes, I. M. Graham, T. 
R. Barton, K. Needham, G. Bradbury, and N. 
D. Merchant. 2013. Short- term disturbance by 
a commercial two- dimensional seismic survey 
does not lead to long- term displacement of har-
bour porpoises. Proceedings of the Royal Society 
B 280:20132001.

Torres, L. G., A. J. Read, and P. Halpin. 2008. Fine- scale 
habitat modeling of a top marine predator: Do prey 
data improve predictive capacity? Ecological Ap-
plications 18:1702–1717.

Vinther, M., and F. Larsen. 2004. Updated estimates of 
harbour porpoise (Phocoena phocoena) bycatch in the 
Danish North Sea bottom- set gillnet fishery. Journal 
of Cetacean Research and Management 6:19–24.

Williams, R., et al. 2014. Counting whales in a challeng-
ing, changing environment. Scientific reports 4:4170.

Wood, S. N. 2006. Generalized additive models: an in-
troduction with R. Chapman and Hall/CRC, Boca 
Raton, Florida, USA.

Wood, S. N. 2011. Fast stable restricted maximum 
likelihood and marginal likelihood estimation of 
semiparametric generalized linear models. Jour-
nal of the Royal Statistical Society, Series B 73:3–36.

SUPPORTING INFORMATION

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/
ecs2.1367/supinfo

http://coastwatch.pfeg.noaa.gov/erddap
http://coastwatch.pfeg.noaa.gov/erddap
http://onlinelibrary.wiley.com/doi/10.1890/XX-XXXX/supinfo
http://onlinelibrary.wiley.com/doi/10.1890/XX-XXXX/supinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1367/supinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1367/supinfo


 

Appendix S1 

 

Fig. S1. Observed distribution of harbor porpoises in the North Sea. Effort and sightings of harbor porpoises 
are displayed per year in the study period 2005-2013; effort segments are shown in grey, sighting positions in 
red. 


